Poisson disk sampling
მაგალითად გვსურს მოვახდინოთ n წერტილის თანაბარი შერჩევა კვადრატში ამისთვის ყველაზე მარტივი გზა არის, რომ ერთმანეთისგან დამოუკიდებლად მოვახდინოთ n ცალი შერჩევა და თითოეული შერჩევაზე x და y კოორდინათები შევარჩიოთ განსაზღვრულ დიაპაზონში თანაბრად(შემთხვევითად). ასეთი შერჩევა ადვილი ჩასატარებელია და კორელაციასაც არ განიცდის, თუმცა განაწილება თანაბარს მიუახლოვდება უსასრულობაში და არცერთი ფიქსირებული დროიდ მომენტისთვის ჩვენ არ შეგვიძლია დარწმუნებით ვთქვათ რაიმე ქვემიდამოში არის თუ არა მოხვედრილი შერჩევები. ერთერთი მეთოდი, რომელიც ამ პრობლემას მეტნაკლებად ჭრის არის შრეებად შერჩევა, თუმცა არსებობს მეთოდები რომლებიც კიდევ უფრო კარგ შედეგს იძლევა.სურათზე ნაჩვენებია 3 კვადრატი, რომელშიც არის დასმული 64 წერტილი თანაბარი შერჩევით(მარცხენა), შრეებად შერჩევით(შუა) და პუასონის დისკის შერჩევით(მარჯვენა). |
პუასონის დისკის შერჩევა გვეხმარება შერჩევების ფიქსირებული რაოდენობისთვის მოვახდინოთ შერჩევა სასურველ განაწილებასთან უფრო მიახლოვებული ვიდრე თანაბარი ან თუნდაც შრეებად შერჩევის შემთხვევაში. შრეებად შერჩევის დროს შესაძლებელია მეზობელ შრეებში შერჩეული ელემენტები ერთმანეთთან ძალიან ახლოს ან პირიქით შორს(შრეების ზომის გათვალისწინებით) აღმოჩნდნენ რაც არასასურველია.
პუასონის დისკის შერჩევა პირველი ელემენტის შერჩევას ახდენს შემთხვევითად და ყოველი შემდეგი შერჩევის დროს ხდება უკვე შერჩეულ ელემენტებთან მინიმალური და მაქსიმალური მანძილების შეზღუდვა. რადგან ყოველი ახალი შერჩევის დროს გვჭირდება ძველ შერჩევებთან მანძილების შემოწმება ამ პროცესის ასაჩქარებლად აუცილებელია ამაჩქარებელი სტრუქტურების გამოყენება. თანაბარი ბადის გამოყენება ახლო მდებარე შერჩევების მოსაძებნად ამ შემთხვევაში მიზანშეწონილია.
Comments
Post a Comment